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Recent advances in scientific simulation are rapidly 
leading to the generation of multi-terabyte sized 
datasets of unprecedented spatial and temporal 
resolution.  The interactive visualization resources 
these datasets demand overwhelm the display 
capabilities of the typical desktop system, both in 
terms of raw graphics processing power and display 
resolution.  The Accelerated Strategic Computing 
Initiative (ASCI) Program of the United States 
Department of Energy (DOE) is building a 
comprehensive environment for performing scientific 
simulation, visualization and analysis of such 
datasets1.  As part of this environment, we are 
building visualization hardware and software systems 
with the capability to display up to fifteen times the 
number of pixels in a typical desktop display. 
 
The scientific simulations of interest at Lawrence 
Livermore National Laboratory (LLNL) have many 
different mesh type and computational zone 
characteristics, but share the same basic visualization 
problem.  It is no longer possible to visualize the 
entire dataset at full resolution on typical desktop 
displays.  The largest simulation performed to date is 
a turbulence calculation with a regular grid resolution 
of 2048x2048x1920, for a total of over 8 billion 
computational zones per timestep2.  For visualization 
purposes, a single variable quantized to 8-bit 
resolution was saved at 274 timesteps, for a total of 
2TB of time-varying visualization data. 
 
In the context of post-processing and analysis for 
terascale scientific simulations, display wall 
capabilities are desirable for several reasons.  First 
and foremost, dataset resolution now exceeds that of 
any individual display device.  Additional 
considerations include increased performance from 
multiple graphics cards and the physical size of the 
display, which is useful for presentation and 
collaboration in addition to enhancing the sense of 
immersion.  For these reasons, we have pursued and 
deployed  high-resolution tiled displays in conference 
rooms and offices at LLNL. 

The current visualization environment at LLNL 
centers around a pair of SGI Onyx2 visualization 
servers with several terabytes of Fiber Channel disk 
storage. The larger system is a 64 processor (R12000) 
machine with 16 Infinite Reality (IR) pipes.  We 
currently use this system to drive a 15-projector 
display wall (see Figure 1) two 2x2 tiled flat-panel 

displays deployed in user offices, and classical 
desktop displays in several offices. 

Multi-pipe display systems 
A variety of multi-pipe multi-screen display systems 
have been introduced in recent years, initially in 
academic institutions and eventually as commercial 
products.  The typical display includes multiple 
projectors situated for front or rear projection onto a 
screen. Screen geometry can be flat, curved, or 
surround, while the materials have included solid 
single piece walls, flexible screens and tiled panels, 
both opaque and transparent.  Individual decisions are 
typically made to satisfy floor space, graphics 
hardware, interaction, and expense constraints. 
 
A number of high-level frameworks have been 
designed to facilitate the development of applications 
for display walls and similar display devices.  Some 
of these frameworks are focused on virtual reality 
applications345, while others focus on the high-
resolution display aspects of multi-pipe systems678.  

 

 

Figure 1: This conference room display wall consists of 15 
rear-projected 1280x1024 panels. 



Toolkits such as IRIS Performer9 deliver an entire 
infrastructure for scene description and rendering for 
multi-pipe environments, while lower level libraries 
such as the Multi-Pipe Utilities (MPU)10 are designed 
as thin layers of abstraction which give more control 
to the programmer. 
 
In this paper we describe our experience in building 
tools for large display walls for scientific analysis and 
visualization. Our goal was to achieve high-
performance rendering on large multi-pipe display 
systems, both for new applications and existing 
single-pipe applications.  Our approach is similar to 
other multi-pipe systems, with a bias against placing 
restrictions on data formats and locality, a key feature 
for applications that handle terascale data.  We will 
describe our hardware system design, low-level 
software library, and experiences with several 
applications that use the library for multi-pipe 
rendering. 
 
System design 
The 15 projectors of the display wall are arranged in 
a 5x3 array, producing a display of 6400x3072 pixels 
across a 16'x8' rear projection screen.  A key goal of 
the display was to edge-match each projected image 
to its neighbor without overlap or separation lines. To 
maximize the number of pixels displayed, image 
blending across the display was deemed undesirable 
because blending would sacrifice a large percent of 
pixels, especially around the four edges of each 
center row image.  Achieving edge-matched 
alignment of all 15 images is not practical with the 
use of traditional 3-gun CRT projectors.  CRT 
projector convergence drifts over time and important 
areas such as the corners are the most troublesome to 
converge.  We opted for single lens LCD-based 
projectors that maintain convergence for the life of 
the projector. Electrohome DLV-1280 projectors 
were selected for their high-resolution, high lumen 
output, color-balancing features, and for the key 
ability to finely adjust the lens position horizontally 
and vertically without moving the projector body.  
The lens adjustment controls physically move the 
lens, providing a more exact pixel alignment than 
electronic whole-pixel image positioning (although 
the DLV-1280 supports electronic positioning as 
well). 
 
Color-balancing all 15 projectors has proven to be a 
difficult task. The DLV-1280 allows for adjusting the 
red, green, and blue levels at six points along the 
gamma curve, resulting in 270 color settings for the 
entire wall display.  Each projector varies slightly in 
color output, but the color output of Xenon lamps 
vary greatly between bulbs and drifts over time.  A 
well color-balanced display will drift out of balance 
in just a few weeks of use.  We are developing a 

computer assisted color balancing system in which 
the output from a color analyzer is fed into a portable 
computer, compared to a standard setting, and used to 
adjust each projector's color through a serial input. 
 
We have also built and deployed tiled, high-
resolution flat panel displays in offices.  The displays 
consist of four LCD panels, arranged 2x2, closely 
spaced together in a single enclosure.  The glass in 
the panels are butted together, bringing the distance 
between viewable pixels of neighboring panels to 
approximately 3/8”.  Our current tiled office display 
brings over 5 million pixels to the user office in a 29” 
x 33” unit that mounts on the wall.  Users can take 
advantage of this extra viewing space as extended 
console space or as a 2560x2048 mini display wall.  
From a software standpoint there is no fundamental 
difference between display walls of projectors or tiled 
flat panels. 
 
Low level library: VDL 
To make it easy for the application developer to 
support the wall and possible to achieve scalable 
rendering performance, we developed a low-level 
interface library, referred to as the Virtual Display 
Library (VDL).  VDL provides a simple application 
interface for threaded, multi-pipe rendering that 
provides hooks for realizing application-specific data 
and geometry culling techniques.  Our initial goals for 
this library include: 
 
• Provide a high level of abstraction so little effort 

is required to modify an existing application to 
use a display wall. 

• Allow access to lower levels of abstraction so 
that the programmer may optimize primitive 
submission for performance. 

• Allow flexible and easy configuration for 
multiple, varied hardware configurations. 

• Avoid imposing restrictions on application event 
handling. 

• Avoid imposing restrictions on application data 
models and access patterns. 

• Provide tiled offscreen rendering capabilities for 
generation of high-resolution movies or printing. 

• Perform in a scalable manner.  
 
The layered architecture of the library is driven by the 
hardware used in constructing the display wall.  At 
the lowest level are the projectors, or the physical 
displays.  At the next level are the IR pipes, referred 
to as logical displays, which drive one or more 
physical displays.  At the highest level of abstraction, 
there can be one or more virtual displays that 
represent a single high-resolution display system.  A 
rectangular display region on the virtual display is 
referred to as a canvas, which is made up of multiple 



tiles, one for each graphics pipe.  An example display 
wall configuration is given in Figure 2. 
 
The library provides basic display management 
services for applications.  VDL handles the creation 
and management of windows on multiple graphics 
pipes, creates and manages threads that render in 
parallel to the windows, performs view matrix 
transformations to provide a high-level abstraction to 
the application, and synchronizes the double 
buffering of multiple windows.  VDL can also 
perform these operations for abstract devices, 
simplifying the creation of high-resolution movies 
through offscreen rendering and tiling. 
 
Because VDL is a low-level library, it is particularly 
important that the library not impose undue overhead 
on the application, limiting scalability.  One measure 
of this overhead was taken from an in-house OpenGL 
performance analysis tool.  The benchmark code 
displays a mesh consisting of over 318,000 triangles 
with an average strip length of 20.  Each triangle is 
assigned a different color.  Shown in Figure 3 are 
measurements of the frame rate of the original 
OpenGL benchmark for comparison with a version 
that has been modified for use with VDL.  The 
modified version uses the high-level abstractions of 
VDL, performing no optimizations such as frustum 
culling for the individual tiles.   Tests were performed 
using both immediate mode rendering and display 
lists.  In order to isolate performance of the library 
from the fill-rate of the graphics pipes, the first three 
tests were performed with an increasing number of 
pipes managing a constant size VDL canvas of 
984x984 pixels.  As shown in the figure, there was a 
small performance drop for a single pipe due to the 
added function call overhead of the VDL interface.  
When scaled to two or four pipes, performance with 
display lists was better than for the single pipe 
application while the immediate mode tests showed 
signs of scalability limitations.  In the last column, a 
four pipe test was performed, drawing to four times 
the number of pixels with negligible performance 

drop, indicating only that this benchmark was not fill-
limited. 
 
 
Surface optimization 
The initial benchmark demonstrated that operating at 
the highest level of abstraction does not impose a 
performance penalty.  However, it does not aggregate 
the capabilities of the multiple graphics pipes that 
make up the display wall. Taking the viewing frustum 
of each graphics pipe into account, it is possible to 
cull a conservative subset of the triangles that are not 
visible on an individual pipe, reducing both the 
amount of data and processing (transform, clipping, 
and rasterization) on each pipe.  To make frustum 
culling more effective, a test surface was decomposed 
using regular spatial bins (see Figure 4).  Scaling 
results for two large surfaces are presented in Figures 
5 and 6.  Results in Figure 5 are for an isosurface of 
approximately 2M triangles rendered on 1-4 pipes.  
Results for the partitioned triangle meshes are 

 
 
 
 
 
 
 
                     (a)                           (b)                          (c) 
Figure 2: Layers of abstraction in describing high-resolution 
display walls. (a) a display wall made up of 4 projectors (physical 
displays). (b) Two logical displays correspond to two graphics 
pipes (c) On the full virtual display, a single canvas has been 
created, which is realized through the creation of two tiles. 
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Figure 3: Performance tests for the high-level VDL abstract 
layers.     (a) original benchmark application at 984x984  (b) 1-
pipe VDL application (c) 2-pipe VDL with same window size (d) 
4-pipe VDL with same window size (e) 4-pipe VDL at 
1968x1968 

 

           
Figure 4: Decomposition of an isosurface into 25 bins 



compared with the performance achieved without 
partitioning.  Two tests are performed for each 
configuration of the pipes.  In the 1-pipe test, only 
one of the n pipes is actually utilized.  Because our 
surfaces are roughly evenly distributed between the 
graphics pipes this is a test of the efficiency and 
overhead of the culling approach which gives an 
upper bound for the second test, the n-pipe test.  In 
this test all n pipes are utilized, measuring the actual 
parallel rendering performance of the display wall 
system.  The pixel resolution of the images was held 
constant at 1020x1020 in order to eliminate pixel fill-
rate influences on performance. Results in Figure 6 
are for a larger surface of 8M triangles, also rendered 
on 1-4 pipes. 
 
The first observation from the results is that overall 
performance degrades as pipes are added to the 
display wall if the surface is not segmented.  This is 
similar to the immediate mode benchmark presented 
in the previous section. When the surface is 
segmented into clusters, performance improves as 
more pipes are added to the display wall because the 
load on each pipe is reduced.  We are currently using 
axis-aligned bounding boxes to determine whether a 
particular cluster is potentially visible on a given 
pipe.  Note that as the number of clusters is increased, 
performance is further improved.  Initial results have 
been promising, and we hope to further improve 
results through the use of data-dependent clustering 
and improved bounding regions. 
 
Applications: Movie player 
A necessary, fundamental capability for large display 
walls is the ability to display precomputed animations 
at interactive frame rates.  Despite the simplicity of 
the problem description, the data demands for large 
display walls (6400x3072 resolution) are daunting.  
The software design must balance disk storage, I/O 
bandwidth, graphics bandwidth, and processing 

requirements to provide predictable and accurate 
frame rates.  A static segmentation of the animation is 
not acceptable because of our desire to support 
dynamic pan and zoom capability for large movie 
frames across the entire display. 
 
In order to reduce the storage and I/O demands, we 
have incorporated both standard and customized 
movie file formats with a variety of compression 
techniques.  Both I/O and decompression are 
performed in parallel for increased image streaming 
performance. The movie player is object-oriented in 
design, using C++ to isolate the thread management 
and synchronization logic in a base class.  Extensions 
to this base class define the method for reading a 
frame from the animation, allowing for support of 
multiple formats.  VDL is leveraged for the flexible 
display configurations and threaded display to 
multiple pipes. 
 
The first challenge is in getting frames from disk into 
memory as quickly as possible.  We use a collection 
of k worker threads, with thread i responsible for 
frames i, 2i, ..., ni.  Each thread maintains a local 
cache of three frames, allowing for efficient 
streaming in both forward and reverse directions.  For 
common movie formats such as MPEG and 
QuickTime we utilize standard libraries to read 
frames from disk.  This leads to a trade-off between a 
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Figure 5: Performance tests for an isosurface consisting of 2M 
triangles.  The surface was subdivided into 25 and 49 clusters for 
improved culling performance. 
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Figure 6: Performance tests for an isosurface consisting of 8M 
triangles.  The surface was subdivided into 49 and 121 clusters for 
improved culling performance. 
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Figure 7: Animations are formatted for high-performance I/O 
by aggregating consecutive frames into "windows".  If the 
individual frames are compressed, a collection of threads 
performs decompression in parallel to achieve high 
framerates.  Note that parallel I/O is achieved by setting the 
number of threads to be greater than the window size. 



large number of threads for parallel decompression 
and a small number of I/O requests to avoid thrashing 
of the disk.  To address this issue, we have developed 
a simple storage format that reduces the number of 
I/O requests by reading multiple compressed frames 
at a time.  Shown in Figure 7 is an example scenario 
with five decompression threads and a window length 
of four.  The first thread to make a request for a frame 
in a particular window will perform a read for the 
entire window of compressed frames. Additional 
threads requiring access to the same window will 
block until the read is completed, after which all 
threads will proceed to decompress the frames in 
parallel.  This approach has proven effective for 
improving scalability to larger image resolutions 
while maintaining high frame-rates. 
 
Performance of the I/O and decompression 
infrastructure is presented in Figure 8.  A movie was 
generated at a resolution of 2560x2048 pixels and 
filtered to create a smaller version at 1280x1024 
pixels.  The frames are compressed with a variant of 
RLE encoding and stored on a Fiber Channel disk 
array.  Tests were performed with a varying number 
of worker threads for decompression. In each test 
case there were three I/O windows which each held 
eight frames of the animation.  These results 
demonstrate scalability for streaming of high-
resolution animations on a large SMP system. 
 
Once frames are decompressed in memory, the 
second bandwidth-limited operation is to send the 
appropriate pixels to each graphics pipe. We have 
experimented with both pixel transfer and texture 

load operations for moving images to a graphics pipe, 
with similar results in each case.  Culling is equally 
critical for 2D images as it was shown to be for 3D 
surfaces.  When performing a texture load or image 
blit for a particular graphics pipe, the first step is to 
determine the smallest set of pixels that are required 

to correctly render the given view.  Depending on the 
interpolation used, this region may extend slightly 
outside the viewing frustum.  Given this image size, a 
texture of the next highest power-of-two resolution is 
defined.  Through the use of sub-image loading, a 
minimal amount of data is sent to each graphics pipe.  
With the interactive pan and zoom capability of the 
player, this tiling is performed dynamically for each 
frame of the animation. 
 
Applications: MeshTV 
One goal of VDL was to provide a means for existing 
console applications to use the display wall.  MeshTV 
is a scalable parallel visualization tool developed at 
LLNL11.  There were three tasks involved in 
enhancing MeshTV to render on the display wall.  
First it was necessary to revise MeshTV's underlying 
graphics library to support the VDL Interface 
requirements.  Next we added controls to the 
MeshTV engine and implemented a new control 
window in the graphical user interface (GUI), 
allowing users to dynamically position graphics 
windows over the display wall.  Finally, we modified 
the parallel version of MeshTV, which uses massively 
parallel software rendering techniques, to leverage 
VDL for hardware-accelerated parallel rendering. 
 
The bulk of the work in the first task involved 
ensuring thread safety in the graphics MeshTV driver 
interface, as required for parallel rendering by VDL.  
A VDL-specific device driver was derived from the 
existing OpenGL driver to utilize the VDL viewing 
transform and viewport manipulation functions.  
 
The second task involved adding display wall 
awareness to MeshTV.  The first part of this phase 
required modification to the MeshTV engine to route 
rendering commands targeting a visualization window 
to a display wall. This change allowed any action 
performed in a visualization window to echo to a 

 
 
Figure 9: Graphical drag-n-drop user interface for 
controlling layout of the display wall.  The user controls the 
layout of the display wall from a traditional console display.
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Figure 8: Streaming performance for compressed movies stored on 
disk.  At larger resolutions the system bandwidth limits scalability. 



display wall. In addition, new commands were 
implemented, allowing users to control how MeshTV 
utilizes a display wall. A control window for the 
display wall was added to the GUI, allowing users to 
specify the number of visualizations to appear on the 
display wall and how they are arranged.  A layout 
editor splits the wall into smaller areas, allowing 
multiple visualization windows to be shown 
simultaneously on the same display wall. The control 
window allows users to intuitively map visualization 
windows via the Motif drag-and-drop mechanism 
(See Figure 9). 
 
The third development task involved modifying the 
parallel version of MeshTV to use a display wall.  
Parallel MeshTV works by splitting parts of a 
problem among separate processes in a distributed 
memory environment.  Each process creates its own 
part of the problem geometry and uses software 
rendering to generate an image. The images from 
each process are composited into a single image via 
the message passing interface (MPI) library and 
displayed in a visualization window by the master 
process.  This sort-last approach to parallel rendering 
was not able to exploit the multiple graphics engines 
of the display wall, which are a natural candidate for 
a sort-first rendering approach.  To counter this, a 
distributed parallel graphics driver was developed. 
This driver transforms geometry from each 
distributed process into a display list representation 
that is communicated to the master process using 
MPI.  This parallel graphics driver collects and 
buffers opcodes and data that represent the OpenGL 
functions that would have been generated by each 
process.  The driver interprets the collective 
opcode/data stream and executes the appropriate 
OpenGL functions in multiple VDL rendering 
threads. Processing time is decreased because the 
geometry is created in parallel and offers 
opportunities to cull the data stream to individual tiles 
in parallel, potentially reducing the number of 
primitives submitted to each graphics context. 
 
Future Directions 
We continue to work in a number of areas to expand 
and improve on our present capabilities.  A major 
effort is underway to incorporate view-dependent 
visual hierarchies into our scalable graphics system. 
This is a critical effort as the dataset sizes continue to 
increase and the current level of interaction is 
insufficient for head tracked immersive displays.  
With our recent addition of a FakeSpace VersaBench 
passive stereo display system, we have been 
considering how to leverage our existing VDL tools 
in the immersive space. High level interfaces to 
devices such as gloves and wands are planned for the 
interactive layers.  We are actively pursuing natural 
gestural interaction interfaces, leveraging techniques 

from computer vision, optimization and natural 
language research.  As the performance of personal 
computer (PC) graphics cards improve, we will be 
considering driving these visualization displays from 
clusters of coupled PCs.  We hope to leverage such 
scalable clusters to drive these displays at even higher 
rates, potentially by tiling to an even greater extent 
and utilizing a balance of sort-first and sort-last 
techniques.  Finally, we must address the issue of 
remote visualization.  The technology is rapidly 
reaching the point where it is feasible to place large 
numbers of LCD flat panel displays in a single office.  
This office could be across campus or across the 
country.  Issues of graphics resource allocation, 
utilization and image/data transport play a key role in 
our deploying these tools into the hands of end users.  
The advent of digital video and new real-time 
compressed digital image transport over gigabit 
Ethernet will open the door to a number of new forms 
of office visualization delivery. 
 
Conclusions 
The use of large- and small-scale tiled displays is 
required to meet the demands of the current tera-scale 
visualization community. The LLNL efforts in this 
space have lead to the creation of one of the largest 
interactive tiled displays built to date and a number of 
new efforts for "personal" tiled displays.  We have 
outlined the system implemented at LLNL for the 
creation and support of large tiled, multi-pipe 
graphics displays.  The system is based around a 
simple, portable, parallel API for tiling OpenGL 
commands in parallel to multiple contexts on a set of 
X servers. This API has allowed us to retrofit existing 
visualization and analysis codes to support these 
displays with very little effort.  We have successfully 
demonstrated the use of this system to provide 
scalable visualization of polygonal surfaces and 
movies.  While this work represents a first step 
toward the ultimate goal of scalable visualization in 
individual office spaces, the result has been the 
creation of useful new visualization workspaces and 
tools for our users. 
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